Phrase reordering for statistical machine translation based on predicate-argument structure

نویسندگان

  • Mamoru Komachi
  • Yuji Matsumoto
  • Masaaki Nagata
چکیده

In this paper, we describe a novel phrase reordering model based on predicate-argument structure. Our phrase reordering method utilizes a general predicate-argument structure analyzer to reorder source language chunks based on predicate-argument structure. We explicitly model longdistance phrase alignments by reordering arguments and predicates. The reordering approach is applied as a preprocessing step in training phase of a phrase-based statistical MT system. We report experimental results in the evaluation campaign of IWSLT 2006.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Translation of Predicate-Argument Structure for SMT

Predicate-argument structure contains rich semantic information of which statistical machine translation hasn’t taken full advantage. In this paper, we propose two discriminative, feature-based models to exploit predicateargument structures for statistical machine translation: 1) a predicate translation model and 2) an argument reordering model. The predicate translation model explores lexical ...

متن کامل

A Unified Model for Soft Linguistic Reordering Constraints in Statistical Machine Translation

This paper explores a simple and effective unified framework for incorporating soft linguistic reordering constraints into a hierarchical phrase-based translation system: 1) a syntactic reordering model that explores reorderings for context free grammar rules; and 2) a semantic reordering model that focuses on the reordering of predicate-argument structures. We develop novel features based on b...

متن کامل

Modeling Syntactic and Semantic Structures in Hierarchical Phrase-based Translation

Incorporating semantic structure into a linguistics-free translation model is challenging, since semantic structures are closely tied to syntax. In this paper, we propose a two-level approach to exploiting predicate-argument structure reordering in a hierarchical phrase-based translation model. First, we introduce linguistically motivated constraints into a hierarchical model, guiding translati...

متن کامل

Predicate-Argument Structure-based Preordering for Japanese-English Statistical Machine Translation of Scientific Papers

Translating Japanese to English is difficult because they belong to different language families. Naı̈ve phrase-based statistical machine translation (SMT) often fails to address syntactic difference between Japanese and English. Preordering methods are one of the simple but effective approaches that can model reordering in a long distance, which is crucial in translating Japanese and English. Th...

متن کامل

Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation

We propose a novel reordering model for phrase-based statistical machine translation (SMT) that uses a maximum entropy (MaxEnt) model to predicate reorderings of neighbor blocks (phrase pairs). The model provides content-dependent, hierarchical phrasal reordering with generalization based on features automatically learned from a real-world bitext. We present an algorithm to extract all reorderi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006